Question #a407d
2 Answers
Explanation:
Take the expression
#x^2014+x^2013=x^2012(x^2+x)#
Note that from the equation
#x^2012(x^2+x)=x^2012(-1)=-x^2012#
Alternatively, start by factoring
#x^2014+x^2013=x^2013(x+1)#
From
#x^2013(x+1)=x^2013(-x^2)=-x^2015#
Another method:
#x^2014+x^2013=x^2014+x^2013+x^2012-x^2012#
Factor
#x^2014+x^2013+x^2012-x^2012=x^2012(x^2+x+1)-x^2012#
Since
#x^2012(x^2+x+1)-x^2012=0-x^2012=-x^2012#
Similar to this, we can add and subtract
#x^2014+x^2013=x^2015+x^2014+x^2013-x^2015#
Factor
#x^2015+x^2014+x^2013-x^2015=x^2013(x^2+x+1)-x^2015#
Using the same logic as before,
#x^2013(x^2+x+1)-x^2015=-x^2015#
Explanation:
So
(If necessary for clarity, multiply both sides by
So we see that
Method 1
Method 2
If you want a numerical answer , solve
We conclude with