Question #a407d

2 Answers
Jun 1, 2016

#x^2014+x^2013=-x^2015=-x^2012#

Explanation:

Take the expression #x^2014+x^2013# and factor #x^2012# from each term.

#x^2014+x^2013=x^2012(x^2+x)#

Note that from the equation #x^2+x+1=0# we can state that #x^2+x=-1#. Thus,

#x^2012(x^2+x)=x^2012(-1)=-x^2012#


Alternatively, start by factoring #x^2013# from both terms.

#x^2014+x^2013=x^2013(x+1)#

From #x^2+x+1=0# we see that #x+1=-x^2#, so:

#x^2013(x+1)=x^2013(-x^2)=-x^2015#


Another method:

#x^2014+x^2013=x^2014+x^2013+x^2012-x^2012#

Factor #x^2012# from the first three terms:

#x^2014+x^2013+x^2012-x^2012=x^2012(x^2+x+1)-x^2012#

Since #x^2+x+1=0#, this equals

#x^2012(x^2+x+1)-x^2012=0-x^2012=-x^2012#


Similar to this, we can add and subtract #x^2015#:

#x^2014+x^2013=x^2015+x^2014+x^2013-x^2015#

Factor #x^2013# from the first three terms:

#x^2015+x^2014+x^2013-x^2015=x^2013(x^2+x+1)-x^2015#

Using the same logic as before,

#x^2013(x^2+x+1)-x^2015=-x^2015#

Jun 1, 2016

#x^2014+x^2013 = x+1 = (1+- isqrt3)/2#

Explanation:

#x^2+x+1# is the quadratic factor of #x^3-1#.

So #x^2+x+1 = 0# implies that #x^3-1=0#.

(If necessary for clarity, multiply both sides by #x-1#.)

So we see that #x^3=1#.

#2013/3=671#, so

#x^2013 = (x^3)^671 = 1^671 = 1#

Method 1

#x^2014 = x*x^2013 = x*1=x#

#x^2014 + x^2013 = x+1#

Method 2

#x^2014+x^2013 = x^2013(x+1) = 1*(x+1) = x+1#

If you want a numerical answer , solve #x^2+x+1=0# for #x = (-1+-isqrt3)/2#

We conclude with

#x+1 = (1+- isqrt3)/2#.