What is the antiderivative of #(sqrt(1 + sqrt((1+sqrt(x)))dx#?

2 Answers
Jun 2, 2016

#8/9(sqrt(sqrtx+1)+1)^(9/2)-24/7(sqrt(sqrtx+1)+1)^(7/2)+16/5(sqrt(sqrtx+1)+1)^(5/2)+C#

Explanation:

Rearrange the integrand:

#intsqrt(1+sqrt(1+sqrtx))dx=intsqrt(sqrt(sqrtx+1)+1)dx#

Substitute and let #u=sqrt(sqrtx+1)+1#. Finding #du# is a little odd, but it's #du=1/(4sqrt(sqrtx+1)sqrtx)#.

Rearranging our integrand so that our #du# value is present:

#=4int(sqrt(sqrt(sqrtx+1)+1)*sqrt(sqrtx+1)sqrtx)/(4sqrt(sqrtx+1)sqrtx)dx#

Here, make the following substitutions in the numerator:

  • #sqrt(sqrt(sqrtx+1)+1)=u^(1/2)#
  • #sqrt(sqrtx+1)=u-1#
  • #sqrtx=(u-1)^2-1=u(u-2)#

The #1/(4sqrt(sqrtx+1)sqrtx)dx# will become #du#.

#=4intu^(1/2)(u-1)u(u-2)du=4intu^(3/2)(u-1)(u-2)du#

Expand and integrate!

#=4int(u^2-3u+2)u^(3/2)du=4int(u^(7/2)-3u^(5/2)+2u^(3/2))du#

#=4(2/9u^(9/2)-6/7u^(7/2)+4/5u^(5/2))+C#

#=8/9(sqrt(sqrtx+1)+1)^(9/2)-24/7(sqrt(sqrtx+1)+1)^(7/2)+16/5(sqrt(sqrtx+1)+1)^(5/2)+C#

Jun 2, 2016

After... what, 30 minutes? I got #8/9(sqrt(1+sqrt(1 + sqrtx)))^9 - 24/7(sqrt(1+sqrt(1 + sqrtx)))^7 + 16/5(sqrt(1+sqrt(1 + sqrtx)))^5 + C#. See, it's not impossible. Just keep track of your substitutions.


For

#int sqrt(1+sqrt(1+sqrtx))dx,#

let's try letting #u = sqrtx#. Then, #du = 1/(2sqrtx)dx#, and #2udu = dx#.

#= 2int usqrt(1+sqrt(1+u))du#

Next, try #s = u+1#. Thus, #ds = du#, and we have

#= 2int (s-1)sqrt(1+sqrts)ds#

#= 2int ssqrt(1+sqrts)ds - 2int sqrt(1+sqrts)ds#

Then, we can try letting #t = sqrts#. So, #dt = 1/(2sqrts)ds#, and #2tdt = ds#. So:

#sqrt(1 + sqrts) = sqrt(1+t)#
#s = t^2,# and

#=> 4int t^3sqrt(1+t)dt - 4int tsqrt(1+t)dt#

Now, for one last substitution... Let #r = sqrt(1+t)#. Then, #dr = 1/(2sqrt(1+t))dt# and #2rdr = dt#. Common theme, here.

So now:

#r^2 = 1 + t => t^3 = (r^2 - 1)^3#
#t = r^2 - 1#

#=> 8int (r^2 - 1)^3r^2dr - 8int (r^2 - 1)r^2dr#

This is definitely doable. Expand the polynomial to get:

#=> 8int (r^4 - r^2)(r^2 - 1)(r^2 - 1)dr - 8int r^4 - r^2dr#

#= 8int (r^4 - r^2)(r^4 - 2r^2 + 1)dr - 8int r^4 - r^2dr#

#= 8int r^8 - 2r^6 + r^4 - r^6 + 2r^4 - r^2dr - 8int r^4 - r^2dr#

#= 8int r^8 - 3r^6 + 3r^4 - r^2dr - 8int r^4 - r^2dr#

Hence, we should get:

#= 8[r^9/9 - 3/7r^7 + 3/5r^5 - r^3/3] - 8[r^5/5 - r^3/3]#

#= 8/9r^9 - 24/7r^7 + 24/5r^5 cancel(- 8/3r^3) - 8/5r^5 + cancel(8/3r^3)#

#= 8/9r^9 - 24/7r^7 + 16/5r^5#

Finally, let's back-substitute to get our answer.

#r = sqrt(1+t)#, so our next step gives us

#= 8/9(sqrt(1+t))^9 - 24/7(sqrt(1+t))^7 + 16/5(sqrt(1+t))^5.#

Now, since #t = sqrts#, we have

#= 8/9(sqrt(1+sqrts))^9 - 24/7(sqrt(1+sqrts))^7 + 16/5(sqrt(1+sqrts))^5.#

Then, since #s = u + 1#, we have

#= 8/9(sqrt(1+sqrt(u+1)))^9 - 24/7(sqrt(1+sqrt(u+1)))^7 + 16/5(sqrt(1+sqrt(u+1)))^5.#

Lastly, we first let #u = sqrtx#. So, we end up with:

#= color(blue)(8/9(sqrt(1+sqrt(1 + sqrtx)))^9 - 24/7(sqrt(1+sqrt(1 + sqrtx)))^7 + 16/5(sqrt(1+sqrt(1 + sqrtx)))^5 + C)#

Oh, look at that. It worked.