How do you differentiate # g(x) = x^cosx #?
1 Answer
Jun 3, 2016
Explanation:
Let
#y=x^cos(x)#
take the natural logarithm of both sides.
#ln(y)=ln(x^cos(x))#
Simplify the right-hand side using the rule:
#ln(y)=cos(x)*ln(x)#
Differentiate both sides. The left-hand side will use the chain rule, and the right hand side the product rule.
#1/y(dy/dx)=-sin(x)*ln(x)+cos(x)*1/x#
Simplifying the right-hand side:
#1/y(dy/dx)=(cos(x)-xsin(x)ln(x))/x#
Solve for
#dy/dx=(x^cos(x)(cos(x)-xsin(x)ln(x)))/x#