How do you differentiate #arctan(x^2)#?
2 Answers
Explanation:
The derivative of the arctangent function is:
#d/dxarctan(x)=1/(1+x^2)#
So, when applying the chain rule, this becomes
#d/dxarctan(f(x))=1/(1+(f(x))^2)*f'(x)#
So, for
#d/dxarctan(x^2)=1/(1+(x^2)^2)*d/dx(x^2)#
#=(2x)/(1+x^4)#
Explanation:
Let
Then
#sec^2(y)*dy/dx=2x#
Dividing both sides by
#dy/dx=cos^2(y)*2x#
#dy/dx=cos^2(arctan(x^2))*2x#
Note that
If
Since cosine is the adjacent side,
Therefore
#dy/dx=(1/sqrt(1+x^4))^2*2x=1/(1+x^4)*2x=(2x)/(1+x^4)#