The shortcuts you have probably been shown are the final result of applying first principles.
#color(blue)("Using first principles")#
#color(brown)("Step 1")#
Have all the eterms with #k# on the left of =
#color(magenta)("Subtract "3/7 k" from both sides")#
#" "1/7kcolor(magenta)(-3/7k)-6" "=" "4+3/7 kcolor(magenta)( -3/7 k)#
#color(magenta)("But "3/7 k-3/7 k=0)#
#" "1/7 k-3/7 k-6" "=" "4color(magenta)(+0)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(brown)("Step 2")#
Only have the terms with #k# on the left of =
#color(magenta)("Add 6 to both sides")#
#" "1/7 k-3/7 k-6color(magenta)(+6)" "=" "4color(magenta)(+6)#
#color(magenta)("But 6-6=0")#
#" "1/7 k-3/7 kcolor(magenta)(+0)" "=" "10#
#" "-2/7 k" "=" "10#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(brown)("Step 3")#
Only have #k# on the left
#color(magenta)("Multiply both sides by "7/2)#
#" "-(2/7color(magenta)(xx7/2))xx k" "=" "10color(magenta)(xx7/2)#
#color(magenta)("But "2/7xx7/2" is the same as "2/2xx7/7)#
#color(magenta)("and "10xx7/2" is the same as "10/2xx7)#
#" "-(2/2xx7/7)xx k" "=" "10/2xx7#
#" "-(1xx1)xx k" "=" "5xx7#
#" "-k" "=" "35#
#color(green)("Multiply both sides by "-1" to make "-k" become "+k)#
#" "bar(ul(|color(white)(2/2)k" "=" "-35color(white)(2/2)))|#