What is the equation of the line tangent to # f(x)=(-3x-1)/(x+4) # at # x=-2 #?

1 Answer

Tangent Line is

#11x+4y=-12#

Explanation:

Given equation #f(x)=(-3x-1)/(x+4)# at the point #x=-2#

Let us solve the point #(x_1, y_1)#
Let #x_1=-2#

Using #y=(-3x-1)/(x+4)#

#y_1=(-3x_1-1)/(x_1+4)#

#y_1=(-3(-2)-1)/(-2+4)#

#y_1=5/2#

We have #(x_1, y_1)=(-2, 5/2)#

Let us solve the slope #m#

#m=f' (x)# at #x=x_1=-2#

#m=d/dx((-3x-1)/(x+4))#

#m=((x+4)*d/dx(-3x-1)-(-3x-1)*d/dx(x+4))/(x+4)^2#

#m=((x+4)*(-3)-(-3x-1)*1)/(x+4)^2#

#m=((-2+4)*(-3)-(-3(-2)-1)*1)/(-2+4)^2#

#m=((2)*(-3)-(6-1)*1)/(2)^2#

#m=-11/4#

Let us solve the tangent line

#y-y_1=m(x-x_1)#

#y-5/2=(-11)/4(x--2)#

#y-5/2=(-11)/4(x+2)#

#4y-10=(-11)(x+2)#

#4y=(-11)(x+2)+10#

#4y=-11x-22+10#

#11x+4y=-12#

Kindly see the graph of #f(x)=(-3x-1)/(x+4)# and #11x+4y=-12#

enter image source here

God bless....I hope the explanation is useful.