How do you find the limit of #(x^2 - 8) / (8x-16)# as x approaches #2^-#? Calculus Limits Determining Limits Algebraically 1 Answer Eddie Jul 1, 2016 #= +oo# Explanation: #lim_{x to 2^-} (x^2 - 8) / (8x-16)# if we let #x = 2 - epsilon#, where #0 < epsilon < < 1# then we have #lim_{epsilon to 0} ((2 - epsilon)^2 - 8) / (8(2 - epsilon)-16)# #lim_{epsilon to 0} (4 - 4 epsilon + epsilon^2 - 8) / (-8 epsilon)# #lim_{epsilon to 0} (-4 - 4 epsilon + epsilon^2 ) / (-8 epsilon)# #lim_{epsilon to 0} 1/(2 epsilon) + 1/2 - epsilon/8 # #= +oo# as #0 < epsilon < < 1# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 1058 views around the world You can reuse this answer Creative Commons License