How do you find the equation of the line tangent to #y=4secx–8cosx# at the point (pi/3,4)?

1 Answer
Jul 9, 2016

I found: #y=12sqrt(3)x-4(pisqrt(3)-1)#

Explanation:

We know that the equation of the tangent can be evaluated as:
#(y-y_0)=m(x-x_0)#
where:
#m=#slope of the tangent;
#x_0,y_0# are the coordinates of the tangence point.
Now, to find the slope #m# we evaluate the DERIVATIVE of our function and evaluate it at #x=pi/3# (given);
so:
#y'=(4sin(x))/(cos^2(x))+8sin(x)#
now we substitute #x=pi/3#
#y'(pi/3)=m=(4sin(pi/3))/(cos^2(pi/3))+8sin(pi/3)=12sqrt(3)#
and for our equation:
#(y-4)=12sqrt(3)(x-pi/3)#
#y=12sqrt(3)x-12pisqrt(3)/3+4#
#y=12sqrt(3)x-4(pisqrt(3)-1)#

hope it helps!