What is the derivative of #cosx^2#?
1 Answer
Explanation:
Differentiate using the
#color(blue)"chain rule"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(f(g(x)))=f'(g(x))g'(x))color(white)(a/a)|))) ........ (A)#
#color(orange)"Reminder"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(cosx)=-sinx)color(white)(a/a)|)))#
#color(blue)"-----------------------------------------------"#
#f(g(x))=cos^2x=(cosx)^2rArrf'(g(x))=2(cosx)^1=2cosx# and
#g(x)=cosxrArrg'(x)=-sinx#
#color(blue)"-----------------------------------------------"#
Substitute these values into (A)
#rArrf'(g(x))=2cosx(-sinx)=-2sinxcosx# Using the following trig. identity to simplify.
#color(orange)"Reminder"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(sin2x=2sinxcosx)color(white)(a/a)|)))#
#rarrf'(g(x))=-2sinxcosx=-sin2x#