How do you evaluate the integral #int 1/x dx# from 0 to 1 if it converges?
1 Answer
Jul 17, 2016
Explanation:
As
#=lim_(M->0)[ln(x)]_M^1#
#=lim_(M->0)(ln(1)-ln(M))#
#=lim_(M->0)-ln(M)#
#=oo#
Thus, the integral diverges to infinity.