How do you find the derivative of #f(x) = (sin x)(cos x)#?
2 Answers
f'(x) = cos2x
Explanation:
differentiate using the
#color(blue)"product rule"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(f(x)=g(x)h(x)rArrf'(x)=g(x)h'(x)+h(x)g'(x))color(white)(a/a)|)))#
#color(orange)"Reminder"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(sinx)=cosx" and " d/dx(cosx)=-sinx)color(white)(a/a)|)))# here
#g(x)=sinxrArrg'(x)=cosx# and
#h(x)=cosxrArrh'(x)=-sinx# Substitute these values into f'(x)
#rArrf'(x)=cosx(-sinx)+cosx(cosx)#
#=cos^2x-sin^2x#
#color(orange)"Reminder" color(red)(|bar(ul(color(white)(a/a)color(black)(cos2x=cos^2x-sin^2x)color(white)(a/a)|)))#
#rArrf'(x)=cos^2x-sin^2x=cos2x#
#color(magenta)"----------------------------------------------------------"# Alternatively
#color(orange)"Reminder" color(red)(|bar(ul(color(white)(a/a)color(black)(sin2x=2sinxcosx)color(white)(a/a)|)))# and recognise that
#f(x)=sinxcosx=1/2sin2x# differentiate f(x) using the
#color(blue)"chain rule"#
#rArrf'(x)=1/2cos2x.d/dx(2x)=1/2cos2x.2=cos2x#