How do you find the limit of #(x²-25)/(sqrt(2x+6)-4)# as x approaches 5?
1 Answer
Jul 30, 2016
In this case, we really have a
#color(blue)(lim_(x->5) (x^2 - 25)/(sqrt(2x + 6) - 4))#
#= lim_(x->5) [d/(dx)(x^2 - 25)]/[d/(dx)(sqrt(2x + 6) - 4)]#
#= lim_(x->5) [2x]/[1/(cancel(2)sqrt(2x + 6))*cancel(2)]#
#= lim_(x->5) 2xsqrt(2x + 6)#
#= 2(5)sqrt(2(5) + 6)#
#= 10*4 = color(blue)(40)#