How do you solve #log_5 9 - log_5 (x-5)=log_5 45#?
1 Answer
Jul 30, 2016
Explanation:
Using the
#color(blue)"laws of logarithms"#
#color(orange)"Reminder"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(logx-logy=log(x/y))color(white)(a/a)|)))........ (A)#
Applies to logarithms to any base.
#color(red)(|bar(ul(color(white)(a/a)color(black)(log_b x=log_b yrArrx=y)color(white)(a/a)|)))........ (B)# Using (A)
#log_5 9-log_5(x-5)=log_5(9/(x-5))# Using (B)
#log_5(9/(x-5))=log_5 45rArr9/(x-5)=45# solve
# 45(x-5)=9rArrx=26/5#