How do you evaluate the integral #int sec^2x/(sqrt(1-tanx))dx# from 0 to #pi/4#?
1 Answer
Aug 1, 2016
Explanation:
We have:
#int_0^(pi//4)sec^2x/sqrt(1-tanx)dx#
This is ripe for substitution. If we let
The bound of
Thus we see:
#int_0^(pi//4)sec^2x/sqrt(1-tanx)dx=-int_0^(pi//4)(-sec^2x)/sqrt(1-tanx)dx=-int_1^0 1/sqrtudu#
Notice that we can take the negative sign to flip the order of the bounds, just to make things look nicer. Write the square root using fractional and negative exponents.
#-int_1^0 1/sqrtudu=int_0^1u^(-1/2)du=[u^(1/2)/(1/2)]_0^1=[2sqrtu]_0^1=2sqrt1-2sqrt0#
#=2#