What is a solution to the differential equation #dy/dx=y/x#?
1 Answer
Aug 2, 2016
Explanation:
We can separate the variables:
#dy/dx=y/x" "=>" "dy/y=dx/x#
Integrate both sides:
#intdy/y=intdx/x" "=>" "ln(y)=ln(x)+C#
So:
#y=e^(ln(x)+C)=e^ln(x)*e^C=Cx#