How do you integrate #int te^-t# by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Euan S. Aug 2, 2016 #= -e^(-t)(t+1) + C# Explanation: For #u, v# functions of #t#, #int uv'dt = uv - int u'vdt# #u(t) = t implies u'(t) = 1# #v'(t) = e^(-t) implies v(t) = -e^(-t)# #intte^(-t)dt = -te^(-t) + int e^(-t)dt# #=-te^(-t) - e^(-t) + C = -e^(-t)(t+1) + C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 48605 views around the world You can reuse this answer Creative Commons License