How do you integrate #int sin^3x# by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Eddie Aug 2, 2016 #=1/3 cos^3 - cos x + C# Explanation: #int \ sin^3 x \ dx# #= int \d/dx (-cos x) sin^2 x \ dx# which by IBP #=-cos x sin^2x + int \cos x d/dx( sin^2 x) \ dx# #=-cos x sin^2 x + 2 int \cos^2 x sin x \ dx# #=-cos x sin^2 x + 2 int \d/dx ( - 1/3 cos^3 x) \ dx# #=-cos x sin^2 x - 2/3 cos^3 x + C# #=-cos x (1 - cos^2 x) - 2/3 cos^3 x + C# #=-cos x + cos^3 x - 2/3 cos^3 x + C# #=1/3 cos^3 - cos x + C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 8130 views around the world You can reuse this answer Creative Commons License