How do you solve #(5x-10)/(7x+6)=10/8#?

1 Answer
Aug 5, 2016

I got #x = -14/3#.


I would first multiply by #8#, and then by #7x+6#.

#(5x - 10)/(7x + 6) = 10/8#

#(8*(5x - 10))/(7x + 6) = 10/cancel(8)*cancel(8)#

#(8(5x - 10))/cancel((7x + 6))*cancel((7x + 6)) = 10*(7x + 6)#

From here, just distribute the terms, move the same types of terms to each side, and solve for #x#.

#ul(8)(ul(color(red)(5))x - ul(color(darkblue)(10))) = ul(10)(ul(color(red)(7))x + ul(color(darkblue)(6)))#

#color(red)(40)x - color(darkblue)(80) = color(red)(70)x + color(darkblue)(60)#

#-140 = 30x#

#color(blue)(x) = -140/30#

#= color(blue)(-14/3)#

And we can prove that this is correct:

#(5(-14/3) - 10)/(7(-14/3) + 6) stackrel(?" ")(=) 10/8#

#(-70/3 - 30/3)/(-98/3 + 18/3) stackrel(?" ")(=) 10/8#

#(-100/3)/(-80/3) stackrel(?" ")(=) 10/8#

#color(red)(cancel(color(black)(-)))100/color(red)(cancel(color(black)(3)))*color(red)(cancel(color(black)(-)))color(red)(cancel(color(black)(3)))/80 stackrel(?" ")(=) 10/8#

#100/80 = color(green)(10/8 = 10/8)#