How do you integrate #ln(ln(x))/x#?
1 Answer
Aug 7, 2016
Explanation:
We can first substitute. Let
#intln(ln(x))/xdx=intln(ln(x))1/xdx=intln(t)dt#
From here, use integration by parts, which takes the form:
#intudv=uv-intvdu#
So, let:
#{(u=ln(t)" "=>" "du=1/tdt),(dv=dt" "=>" "v=t):}#
Thus:
#intln(t)dt=tln(t)-intt(1/t)dt#
#=tln(t)-intdt#
#=tln(t)-t#
#=ln(x)*ln(ln(x))-ln(x)#
#=ln(x)(ln(ln(x))-1)+C#