What is #int_1^e (lnx)/(2x) dx#?

2 Answers
Aug 7, 2016

#= 1/4#

Explanation:

#int_1^e (lnx)/(2x) dx#

#= int_1^e d/dx ( 1/4ln^2x )dx#

#= 1/4[ ln^2x ]_1^e#

#= 1/4[ 1^2 - 0 ]_1^e = 1/4#

Aug 7, 2016

#1/4#

Explanation:

Can do this in a number of ways, here are two of them. The first is to use a substitution:

#color(red)("Method 1")#

#int_1^e (ln(x))/(2x) dx = 1/2 int_1^e (ln(x))/(x) dx#

Let #u = ln(x) implies du = (dx)/x#

Transforming the limits:

#u = ln(x) implies u: 0 rarr 1#

Integral becomes:

#1/2int_0^1 u du =1/2 [1/2u^2]_0^1 = 1/2*1/2 = 1/4#

This is the simpler way, but you might not always be able to make a substitution. An alternative is integration by parts.

#color(red)("Method 2")#

Use integration by parts:

For functions #u(x), v(x)#:

#int uv' dx = uv - int u'v dx#

#u(x) = ln(x) implies u'(x) = 1/x#

#v'(x) = 1/(2x) implies v(x) = 1/2ln(x)#

#int (ln(x))/(2x) dx=1/2ln(x)ln(x) - int (ln(x))/(2x) dx#

Grouping like terms:

#2 int (ln(x))/(2x) dx = 1/2ln(x)ln(x) + C#

#therefore int (ln(x))/(2x) dx = 1/4ln(x)ln(x) + C#

We are working with a definite integral though, so applying limits and removing the constant:

#int_(1)^(e) (ln(x))/(2x) dx = [1/4ln(x)ln(x)]_1^e #

#= 1/4ln(e)ln(e) - 1/4ln(1)ln(1)#

#ln(e) = 1, ln(1) = 0#

#implies int_(1)^(e) (ln(x))/(2x) dx = 1/4#