What is the indefinite integral of #ln(sqrt(x)) dx#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer Cesareo R. Aug 8, 2016 # 1/2(xlog_e(x)-x) + C# Explanation: #log_e(sqrt(x))= 1/2log_e(x)# and #d/(dx)(x log_e(x))=log_e(x) + 1# then #int log_e(sqrt(x))dx = 1/2 int log_e(x) dx= 1/2(xlog_e(x)-x) + C# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 1465 views around the world You can reuse this answer Creative Commons License