How do you simplify #(2x^2-2)/(x^2-6x-7)*(x^2-10x+21)#?
2 Answers
Explanation:
Explanation:
To simplify this expression, we require to
#color(blue)"factorise"# Let us begin with
#2x^2-2# which has a common factor of 2 in both terms.
#color(blue)"-------------------------------------------------"#
#rArr2x^2-2=2(x^2-1)........ (A)# Now
#x^2-1# is a#color(red)"difference of squares"# which, in general factorises as follows.
#color(red)(|bar(ul(color(white)(a/a)color(black)(a^2-b^2=(a-b)(a+b))color(white)(a/a)|)))# here
# x^2=(x)^2" and " 1=(1)^2rArra=x" and " b=1#
#rArrx^2-1=(x-1)(x+1)# substitute back into (A)
#rArr2x^2-2=2(x-1)(x+1)#
#color(blue)"------------------------------------------------------"# The standard form of a quadratic is
#color(red)(|bar(ul(color(white)(a/a)color(black)(ax^2+bx+c)color(white)(a/a)|)))# and to factorise consider the factors of the product ac, which must sum to give b.
#color(blue)"-----------------------------------------------------"# For
#x^2-6x-7 , ac=-7" and " b=-6# The required values the are -7 and +1
#rArrx^2-6x-7=(x-7)(x+1)# and for
#x^2-10x+21 , ac=21" and " b=-10# the required values are -7 and -3
#rArrx^2-10x+21=(x-7)(x-3)#
#color(blue)"----------------------------------------------------------"# Substitute all of these factors back into the original expression.
#rArr(2(x-1)(x+1))/((x-7)(x+1))xx((x-7)(x-3))/1# and 'cancelling' common factors between numerator/denominator
#=(2(x-1)cancel((x+1)))/(cancel((x-7))cancel((x+1)))xx(cancel((x-7))(x-3))/1# =2(x-1)(x-3)
#color(blue)"------------"#