What is the derivative of #f(x)=3sin^2x#?

1 Answer
Aug 17, 2016

#f'(x)=3sin2x#

Explanation:

differentiate using the #color(blue)"chain rule"#

#color(red)(|bar(ul(color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))........ (A)#

let #u=sinxrArr(du)/dx=cosx#

note : #sin^2x=(sinx)^2#

so #y=3u^2rArr(dy)/(du)=6u#

substitute these values into (A) changing u back into terms of x.

#rArrdy/dx=6ucosx=6sinxcosx#

#color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(sin2x=2sinxcosx)color(white)(a/a)|)))#

#rArrdy/dx=6sinxcosx=3sin2x#