What is the integral of #int 1/(x^(3/2) + x^(1/2)) dx#?
1 Answer
Aug 19, 2016
Explanation:
We have:
#I=int1/(x^(3/2)+x^(1/2))dx#
Factor the denominator.
#I=int1/(x^(1/2)(x+1))dx#
Which can be rewritten as:
#I=intx^(-1/2)/(x+1)dx#
#I=intx^(-1/2)/((x^(1/2))^2+1)dx#
Now, let
#I=2int(1/2x^(-1/2))/((x^(1/2))^2+1)dx#
Substituting:
#I=2int1/(u^2+1)du#
This is the arctangent integral:
#I=2arctan(u)+C#
#I=2arctan(x^(1/2))+C#