How do you differentiate #f(x)=4/cosx#?
1 Answer
Aug 23, 2016
Explanation:
differentiate using the
#color(blue)"chain rule"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))........ (A)#
#y=f(x)=4/(cosx)=4(cosx)^-1# let
# u = cosxrArr(du)/(dx)=-sinx# and
#y=4u^-1rArr(dy)/(du)=-4u^-2# substitute these values into (A) convert u back into terms of x
#rArrdy/dx=-4u^-2(-sinx)=(4sinx)/(cos^2x)=(4sinx)/cosx xx1/cosx#
#color(orange)"Reminder"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(tanx=(sinx)/(cosx)" and " secx=1/(cosx))color(white)(a/a)|)))#
#rArrdy/dx=4tanxsecx# Note that f(x) may also be differentiated using the
#color(blue)"quotient rule"#