Let the point #P_1->(x,y)=(13,43)#
Quadratic standard form equation: #y=ax^2+bx+5color(white)(" ").............................Eqn(1)#
Vertex form equation: #y=a(x+b/(2a))^2+kcolor(white)(" ") .......................Eqn(2)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(brown)("Using Eqn(2)")#
We are given that Vertex#->(x_("vertex"),y_("vertex"))=(3,-5)#
But #x_("vertex")=(-1)xxb/(2a)=+3" "=>" "b=-6acolor(white)(" ")......Eqn(3)#
Side note: #k=-5# from vertex y-coordinate
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(brown)("Using Eqn(3) substitute for b in Eqn(1)")#
#y=ax^2+(-6a)x+5# ...........................Eqn(4)
But we are given the point #P_1->(13,43)#
Thus Eqn(4) becomes:
#43=a(13)^2-6a(13)+5color(white)(" ")......Eqn(4_a)#
#color(blue)("From this you can solve for "a" and from that solve for "b)#
#color(red)("I will let you take over from this point")#