How do you evaluate the limit #(x^4-16)/(x-2)# as x approaches #2#?

1 Answer
Aug 29, 2016

#lim_(x->2) (x^4-16)/(x-2) = 32#

Explanation:

#x^4-16#

#=(x^2)^2-4^2#

#=(x^2-4)(x^2+4)#

#=(x^2-2^2)(x^2+4)#

#=(x-2)(x+2)(x^2+4)#

So:

#(x^4-16)/(x-2) = (color(red)(cancel(color(black)((x-2))))(x+2)(x^2+4))/color(red)(cancel(color(black)((x-2)))) = (x+2)(x^2+4)#

with exclusion #x != 2#

Hence:

#lim_(x->2) (x^4-16)/(x-2)#

#=lim_(x->2) ((x+2)(x^2+4))=((2)+2)((2)^2+4)=4*8 = 32#