How do you find the derivative of the function: #arctan (cos x)#?

1 Answer
Sep 1, 2016

#(-sinx)/(1+cos^2x)#

Explanation:

differentiate using the #color(blue)"chain rule"#

#color(red)(|bar(ul(color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))........ (A)#

#color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(arctanx)=1/(1+x^2))color(white)(a/a)|)))#

let #u=cosxrArr(du)/(dx)=-sinx#

and #y=arctanurArr(dy)/(du)=1/(1+u^2)#

substitute these values into (A) changing u back to x.

#rArrdy/dx=1/(1+u^2)xx(-sinx)=(-sinx)/(1+cos^2x)#