How do you write #64=4^x# in Logarithm form?

2 Answers
Sep 1, 2016

#log_4 64 = x#

Explanation:

(this follows from the basic definition of log)

Sep 1, 2016

#log_color(red)(a) color(blue)(b) = color(lime)(c) hArr color(red)(a)^color(lime)(c) = color(blue)(b)#

#log_color(red)(4) color(blue)(64) = color(lime)(x) hArr color(red)(4)^color(lime)(x) = color(blue)(64)#

"The #color(red)("base")# stays the #color(red)("base")#, and the other two change around"

Explanation:

log form and index form are interchangeable:

By definition: #log_color(red)(a) color(blue)(b) = color(lime)(c) hArr color(red)(a)^color(lime)(c) = color(blue)(b)#

Remember the following:

"The #color(red)("base")# stays the #color(red)("base")#, and the other two change around"

#log_color(red)(4) color(blue)(64) = color(lime)(x) hArr color(red)(4)^color(lime)(x) = color(blue)(64)#

#log_color(red)(4) color(blue)(64) = color(lime)(3) hArr color(red)(4)^color(lime)(3) = color(blue)(64)#