How do you solve #(x+3)/4 = 9/(x+3)#?

1 Answer
Sep 1, 2016

#x=-9" and " +3 larr" Corrected values"#

Explanation:

Given:#" "(x+3)/4=9/(x+3)#

#color(red)("Two methods shown for starting this off")#

#color(blue)("Starting off by using short cut method and missing out steps")#

Write as #(x+3)^2=36 larr" Using cross multiplication"#

#" "color(green)(ul(bar(|color(white)(2/2)x^2+6x-27=0color(white)(2/2)|)))#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)("Starting off by using first principles")#

The cross multiplication comes from this

Multiply both sides by #color(blue)((x+3))# 'getting rid of it' on the right hand side

#color(brown)((x+3)/4color(blue)(xx(x+3)) = 9/(x+3)color(blue)(xx(x+3)))#

#((x+3)^2)/4=9xx(x+3)/(x+3)#

But #(x+3)/(x+3) = 1#

#((x+3)^2)/4=9#

Multiply both sides by #color(blue)(4)#

#color(brown)(((x+3)^2)/4color(blue)(xx4)=9color(blue)(xx4))#

#(x+3)^2xx4/4=36#

But #4/4=1#

#(x+3)^2=36# ........................Equation(1)

The above is the same as in the cross multiplication.
'................................................................
Consider: #(x+3)^2=color(blue)((x+3))color(brown)((x+3)#

Multiply everything in the right hand bracket by everything in the left

#color(brown)( color(blue)(x)(x+3)" "color(blue)(+3)(x+3)) #
#x^2+3x" "+3x+9#

#x^2+6x+9# Putting this back into Equation(1)

#color(brown)((x+3)^2=36)color(blue)(" "->" " x^2+6x+9=36)" "........Equation(1_a)#

Subtract 36 from both sides
#" "color(green)(ul(bar(|color(white)(2/2)x^2+6x-27=0color(white)(2/2)|)))#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The only whole number factors of 27 are, 3 and 9; 1 and 27

#3xx9=27" and "9-3=6#

#=> (x+9)(x-3) =0#

#=> x=-9" and "x=+3#

#color(brown)("If you can not spot the factors after a few attempts in a quadratic use the equation")##color(brown)("or complete the square.")#

#ax^2+bx+c=0 -> x=(-b+-sqrt(b^2-4ac))/(2a)#

#a=1; b=6; c=-27#

#=>x=(-6+-sqrt(6^2-4(1)(-27)))/(2(1))#

#=> x=-6/2+-sqrt(144)/2#

#=>x=-3+-6#

#x=-9" and " +3#