What is the inverse of the function #y=log_4 x#?

2 Answers
Sep 6, 2016

#f^(- 1)(x) = 4^(x)#

Explanation:

We have: #y = log_(4)(x)#

Let's begin by interchanging the variables:

#=> x = log_(4)(y)#

In order to determine the inverse of the function, we must solve for #y#.

Using the laws of logarithms:

#=> y = 4^(x)#

Finally, let's replace #y# with #f^(- 1)(x)#:

#=> f^(- 1)(x) = 4^(x)#

Sep 7, 2016

#y=4^x#

Explanation:

Given:#" "y=log_4(x)#

Another way of writing this is

#4^y=x#

Where there is a #y# write #x#
Where there is a #x# write #y#

#4^x=y" "larr" Function inverse"#

The function inverse is a reflection of the original equation about the straight line #y=x#

Tony B