How do you integrate #int arctanx# by integration by parts method?
1 Answer
Sep 11, 2016
Explanation:
We have:
#intarctan(x)dx#
And we will use the integration by parts formula:
#intudv=uv-intvdu#
So, we set
#{:(u=arctan(x)," "" ",dv=dx),(" "" "darr," "" "," "darr),(du=1/(1+x^2)dx," "" ",v=x):}#
Thus:
#intarctan(x)dx=xarctan(x)-intx/(1+x^2)dx#
Solving the second integral:
#=xarctan(x)-1/2int(2x)/(1+x^2)dx#
Let
#=xarctan(x)-1/2int(du)/u#
#=xarctan(x)-1/2lnabsu#
#=xarctan(x)-1/2ln(1+x^2)+C#