If #x^2-y^2=40# and #x-y=7#, what is #x#?

2 Answers
Sep 14, 2016

The Soln. #x=89/14, y=-9/14#.

Explanation:

#x^2-y^2=40#

#rArr (x-y)(x+y)=40#

But, #x-y=7#

#:. 7(x+y)=40

# rArr x+y=40/7#, and, #x-y=7#

Adding, #2x=40/7+7=89/7#

#:. x=89/14#. This, together with, #x+y=40/7# gives,

#y=40/7-x=40/7-89/14=80/14-89/14=-9/14#.

These roots satisfy the given eqns.

Hence, the Soln. #x=89/14, y=-9/14#.

Sep 14, 2016

#x = 6 5/14#

Explanation:

#x^2-y^2=40 or (x+y)(x-y)=40 or (x+y)*7=40 or (x+y)=40/7 (1) ; (x-y) =7(2)#Adding (1) & (2) we get #2x= 7+40/7=89/7 :. x=89/14 = 6 5/14#[Ans]