How do you find the limit of #1/t - 1/(t^2+t) # as t approaches 0? Calculus Limits Determining Limits Algebraically 1 Answer Ratnaker Mehta Sep 14, 2016 #" The Lim."=1#. Explanation: The Limit#=lim_(trarr0){1/t-1/(t^2+t)}# #=lim_(trarr0){1/t-1/(t(t+1))}# #=lim_(trarr0){(t+1-1)/(t(t+1))}# #=lim_(trarr0)(cancelt/(cancelt(t+1)))# #=lim_(trarr0)1/(t+1)# #=1/(0+1)#. #:." The Lim."=1#. Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 27832 views around the world You can reuse this answer Creative Commons License