How do you find the derivative of #y = arctan(x^2)#?
2 Answers
Sep 16, 2016
Explanation:
Note that
#d/dxarctan(f(x))=1/(1+f(x)^2)*f'(x)#
Thus:
#dy/dx=d/dxarctan(x^2)=1/(1+(x^2)^2)*d/dxx^2=(2x)/(1+x^4)#
Sep 16, 2016
Explanation:
Rearrange the equation:
#tan(y)=x^2#
Differentiate both sides. Recall to use the chain rule on the left hand side.
#sec^2(y)dy/dx=2x#
Note that
#(tan^2(y)+1)dy/dx=2x#
Since
#(x^4+1)dy/dx=2x#
Solving for
#dy/dx=(2x)/(x^4+1)#