How do you differentiate #f(x)=(2cosx)/(x+1)#?

1 Answer
Sep 17, 2016

#(-2(x+1)sinx-2cosx)/(x+1)^2#

Explanation:

differentiate using the #color(blue)"quotient rule"#

If #f(x)=(g(x))/(h(x))# then

#color(red)(bar(ul(|color(white)(a/a)color(black)(f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2)color(white)(a/a)|)))#
#color(blue)"----------------------------------------------------------------"#

here #g(x)=2cosxrArrg'(x)=-2sinx#

and #h(x)=x+1rArrh'(x)=1#
#color(blue)"-----------------------------------------------------------------"#
substitute these values into f'(x)

#rArrf'(x)=((x+1)(-2sinx)-2cosx(1))/(x+1)^2#

#=(-2(x+1)sinx-2cosx)/(x+1)^2#