How do you evaluate the definite integral #int sin^2xcosx# from #[pi/4, pi/2]#?
1 Answer
Sep 18, 2016
Explanation:
#int_(pi/4)^(pi/2)sin^2xcosxdx#
We will use the substitution
Before substituting, recall to plug the current bounds into the function of
#=int_(sqrt2/2)^1u^2du#
Using the rule where
#=[u^3/3]_(sqrt2/2)^1=1/3(1^3-(sqrt2/2)^3)=1/3(1-(sqrt2)/4)=(4-sqrt2)/12#