How do you find the equation of a line tangent to the function #y=3x-4sqrtx# at x=4?
1 Answer
Sep 23, 2016
Explanation:
Find the point first where the tangent line will intersect on the curve:
#y(4)=3(4)-4sqrt4=4#
Implying the point
To find the slope of the tangent line, take the derivative of the function first, using the power rule:
#y=3x^1-4x^(1/2)#
#dy/dx=3(1)x^0-4(1/2)x^(-1/2)#
#dy/dx=3-2/sqrtx#
So, the slope at
#dy/dx|_(x=4)=3-2/sqrt4=2#
Using the point
#y-y_0=m(x-x_0)#
#y-4=2(x-4)#
#y=2x-4#
graph{(y-3x+4sqrtx)(y-2x+4)=0 [-1, 10, -5, 16]}