Question #a49f2

1 Answer
Sep 24, 2016

#=1/2 (x^2 arctan(x^2) - x + arctan (x) )+ C#

Explanation:

#I = int x arctan(x^2) dx#

we first note that: #arctan u = int 1/(1+u^2) du#

Or IOW, #d/(du) arctan u = 1/(1+u^2)# so it's a manageable function

we can then say, setting up an IBP, that:

#I int x arctan(x^2) dx#

#=int d/dx(x^2/2) arctan(x^2) dx#

#=x^2/2 arctan(x^2) -int x^2/2 d/dx(arctan(x^2)) dx#

#implies I =x^2/2 arctan(x^2) - color(red)(int x^2/2 1/(1+x^2) dx) qquad triangle #

if we take the red term, we have:

# 1/2 int (x^2)/(1+x^2) dx#

# = 1/2 int (1 + x^2 - 1)/(1+x^2) dx#

# = 1/2 int 1 - ( 1)/(1+x^2) dx#

# =color(red)( 1/2 ( x - arctan (x) )+ C)# which we can plug back into #triangle# to give:

#I =x^2/2 arctan(x^2) - ( 1/2 ( x - arctan (x) )+ C)#

#=1/2 (x^2 arctan(x^2) - x + arctan (x) )+ C#