What is the derivative of #1/(sec x - tan x)#?

2 Answers
Sep 25, 2016

#d/dx(1/(secx-tanx))=1/(1-sinx)#

Explanation:

Note that:

#1/(secx-tanx)=1/(1/cosx-sinx/cosx)=cosx/(1-sinx)#

To differentiate this, we will use the quotient rule, which states that when we have the functions #f# and #g# divided by one another:

#d/dx(f/g)=(f^'*g-f*g^')/g^2#

So here, we see that #f=cosx# so #f^'=-sinx#, and #g=1-sinx# so #g^'=-cosx#. Thus:

#d/dx(cosx/(1-sinx))=((-sinx)(1-sinx)-(cosx)(-cosx))/(1-sinx)^2#

Simplifying:

#=(-sinx+sin^2x+cos^2x)/(1-sinx)^2#

Since #sin^2x+cos^2x=1#:

#=(1-sinx)/(1-sinx)^2#

#=1/(1-sinx)#

Sep 25, 2016

Mason has given a fine answer, here's a bit of a tricky one.

Explanation:

One of the Pythagorean trigonometric identities is

#tan^2 x + 1 = sec^2 x#

Which also gets us #sec^2 x - tan^2 x = 1#. And factoring the difference of squares on the left:

#(secx-tanx)(sec x +tan x)#

(The is the same bit of algebra we use to rationalize fractions involving #sqrta - b#. In this case applied to trigonometry.)

#1/((sec x - tan x )) * ((sec x + tan x))/((secx + tan x)) = secx + tanx#.

Now use the differentiation rulles for these trig functions to get

#d/dx(1/(sec x - tan x)) = secx tan x + sec^2 x#

Comparing answers:

#secx tan x + sec^2 x = 1/cos x sinx/cosx + 1/cos^2 x#

# = (sinx + 1)/cos^2 x#

# = (1+sinx)/(1-sin^2 x)#

# = 1/(1-sinx)#