How do you evaluate the limit #(1/x^2-1/9)/(x-3)# as x approaches #3#? Calculus Limits Determining Limits Algebraically 1 Answer Cesareo R. Sep 27, 2016 #-2/27# Explanation: #(1/x^2-1/9)/(x-3) = -(x^2-9)/(9 x^2(x-3)) =-((x+3)(x-3))/(9x^2(x-3)) =-(x+3)/(9x^2)# so #lim_(x->3)(1/x^2-1/9)/(x-3) = lim_(x->3)-(x+3)/(9x^2)=-2/27# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 3920 views around the world You can reuse this answer Creative Commons License