What is the value of #|m|# in #root(3)(m+9)=3+root(3)(m-9)# ?

1 Answer
Oct 2, 2016

#|m| = 4sqrt(5)#

Explanation:

We will make use of the expansion of the cube of a binomial

#(a+b)^3 = a^3+3a^2b+3ab^2+b^3#

as well as the quadratic formula

#ax^2+bx+c=0 => x = (-b+-sqrt(b^2-4ac))/(2a)#

Proceeding,

#root(3)(m+9) = 3 + root(3)(m-9)#

#=> m+9 = (3+root(3)(m-9))^3#

#=> m+9 = 27 + 27root(3)(m-9) + 9(root(3)(m-9))^2+m-9#

#=> 9(root(3)(m-9))^2 + 27root(3)(m-9) + 9 = 0#

#=> (root(3)(m-9))^2 + 3root(3)(m-9) + 1 = 0#

#=> root(3)(m-9) = (-3+-sqrt((-3)^2-4(1)(1)))/(2(1))#

#=> root(3)(m-9) = (-3+-sqrt(5))/2#

#=> 2root(3)(m-9) = -3 +-sqrt(5)#

#=> 8(m-9) = (-3 +- sqrt(5))^3#

#=> 8m - 72 = -27 +- 27sqrt(5) - 45 +- 15sqrt(5)#

#=> 8m - 72 = -72 +- 32sqrt(5)#

#=> 8m = +-32sqrt(5)#

#=> m = +-4sqrt(5)#

#:. |m| = 4sqrt(5)#