Question #ac6f8
2 Answers
Solve:
Explanation:
a.
Replace
b.
Finally, within interval
Check.
Explanation:
We cannot solve this, since it is not an equation, but we can simplify it.
Recall that
So, first, we see that
#sin(pi/6-x)=sin(pi/6)cos(x)-cos(pi/6)sin(x)#
#=1/2cos(x)-sqrt3/2sin(x)#
#=(cos(x)-sqrt3sin(x))/2#
Also, note that
Thus:
#cos^2(pi/6)-sin^2(pi/6-x)=3/4-((cos(x)-sqrt3sin(x))/2)^2#
#=(3-(cos(x)-sqrt3sin(x))^2)/4#
#=(3-(cos^2(x)-2sqrt3sin(x)cos(x)+3sin^2(x)))/4#
Note that
#=(3-cos^2(x)+sqrt3sin(2x)-3sin^2(x))/4#
We can simplify this many ways, this being just one:
#=(3-3cos^2(x)+2cos^2(x)+sqrt3sin(2x)-3sin^2(x))/4#
#=(3-3(cos^2(x)+sin^2(x))+2cos^2(x)+sqrt3sin(2x))/4#
#=(3-3+2cos^2(x)+sqrt3sin(2x))/4#
#=(2cos^2(x)+sqrt3sin(2x))/4#