How do you evaluate the limit #sqrt(x-2)-sqrtx# as x approaches #oo#?
2 Answers
0
Explanation:
expanding by Binomial Expansion
Explanation:
#lim_(xrarroo)sqrt(x-2)-sqrtx#
We can rewrite this square root using its conjugate:
#=lim_(xrarroo)(sqrt(x-2)-sqrtx)/1*(sqrt(x-2)+sqrtx)/(sqrt(x-2)+sqrtx)#
#=lim_(xrarroo)((x-2)-x)/(sqrt(x-2)+sqrtx)#
We can try to take a factor from the denominator:
#=lim_(xrarroo)(-2)/(sqrt(x(1-2/x))+sqrtx)#
#=lim_(xrarroo)(-2)/(sqrtxsqrt(1-2/x)+sqrtx)#
#=lim_(xrarroo)(-2)/(sqrtx(sqrt(1-2/x)+1))#
Notice that as
#=lim_(xrarroo)(-2)/(sqrtoo(sqrt(1-0)+1))#
#=lim_(xrarroo)-1/sqrtoo#
#=0#