What is the derivative of this function #y=cos^-1(-2x^3-3)^3#?

1 Answer
Oct 5, 2016

#d/dx(cos^-1u(x))=(18x^2(-2x^3-3)^2)/(sqrt(1-(-2x^3-3)^6)#

Explanation:

Based on the derivative on inverse trigonometric functions we have:

#color(blue)(d/dx(cos^-1u(x))=-(d/dx(u(x)))/(sqrt(1-u(x)^2))#
So, let us find #d/dx(u(x))#

Here ,#u(x)# is a composite of two functions so we should apply chain rule to compute its derivative.

Let
#g(x)=-2x^3-3# and
#f(x)=x^3#

We have #u(x)=f(g(x))#
The chain rule says:
#color(red)(d/dx(u(x))=color(green)(f'(g(x)))*color(brown)(g'(x))#

Let us find #color(green)(f'(g(x))#

#f'(x)=3x^2# then,
#f'(g(x))=3g(x)^2#
#color(green)(f'(g(x))=3(-2x^3-3)^2#

Let us find #color(brown)(g'(x))#

#color(brown)(g'(x)=-6x^2)#

#color(red)((du(x))/dx)=color(green)(f'(g(x)))*color(brown)(g'(x))#

#color(red)((du(x))/dx)=color(green)(3(-2x^3-3)^2)*(color(brown)(-6x^2))#
#color(red)((du(x))/dx)=-18x^2(-2x^3-3)^2#

#color(blue)(d/dx(cos^-1u(x))=-(d/dx(u(x)))/(sqrt(1-u(x)^2)#

#color(blue)(d/dx(cos^-1u(x))=-(-18x^2(-2x^3-3)^2)/(sqrt(1-((-2x^3-3)^3)^2)#
Therefore,

#color(blue)(d/dx(cos^-1u(x))=(18x^2(-2x^3-3)^2)/(sqrt(1-(-2x^3-3)^6)#