How do you differentiate #y = x ^ sqrt(x)#? Calculus Differentiating Exponential Functions Differentiating Exponential Functions with Other Bases 1 Answer Cesareo R. Oct 5, 2016 #dy/dx=1/2 x^(-1/2 + sqrt[x]) (2 + Log_e(x))# Explanation: #y = x ^ sqrt(x)# Applying the #log# transformation ti both sides #log_ey=sqrt(x) log_e x# so #dy/y = (1/2log_e x/sqrt(x)+sqrt(x)/x)dx# so #dy/dx = (1/2log_e x/sqrt(x)+sqrt(x)/x)y = (1/2log_e x/sqrt(x)+sqrt(x)/x)x^sqrt(x)# Finally #dy/dx=1/2 x^(-1/2 + sqrt[x]) (2 + Log_e(x))# Answer link Related questions How do I find #f'(x)# for #f(x)=5^x# ? How do I find #f'(x)# for #f(x)=3^-x# ? How do I find #f'(x)# for #f(x)=x^2*10^(2x)# ? How do I find #f'(x)# for #f(x)=4^sqrt(x)# ? What is the derivative of #f(x)=b^x# ? What is the derivative of 10^x? How do you find the derivative of #x^(2x)#? How do you find the derivative of #f(x)=pi^cosx#? How do you find the derivative of #y=(sinx)^(x^3)#? How do you find the derivative of #y=ln(1+e^(2x))#? See all questions in Differentiating Exponential Functions with Other Bases Impact of this question 47692 views around the world You can reuse this answer Creative Commons License