How do you evaluate the limit #(7x^2-4x-3)/(3x^2-4x+1)# as x approaches 1?
1 Answer
Explanation:
Factoring the numerator and denominator, we can simplify the rational expression as follows:
#(7x^2-4x-3)/(3x^2-4x+1) = (color(red)(cancel(color(black)((x-1))))(7x+3))/(color(red)(cancel(color(black)((x-1))))(3x-1)) = (7x+3)/(3x-1)#
with exclusion
That means that the functions
So we find:
#lim_(x->1) (7x^2-4x-3)/(3x^2-4x+1) = lim_(x->1) (7x+3)/(3x-1)#
#color(white)(lim_(x->1) (7x^2-4x-3)/(3x^2-4x+1)) = (7(color(blue)(1))+3)/(3(color(blue)(1))-1)#
#color(white)(lim_(x->1) (7x^2-4x-3)/(3x^2-4x+1)) = (7+3)/(3-1)#
#color(white)(lim_(x->1) (7x^2-4x-3)/(3x^2-4x+1)) = 10/2#
#color(white)(lim_(x->1) (7x^2-4x-3)/(3x^2-4x+1)) = 5#