How do you find the definite integral of #int (1+3x)dx# from #[ -1,5]#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer Ratnaker Mehta Oct 6, 2016 #43.# Explanation: We know that, if #intf(x)dx=F(x)+C,# then, #int_a^bf(x)dx=[F(x)]_a^b=F(b)-F(a)#. #int_-1^5 (1+3x)dx=[x+3x^2/2]_-1^5# #=[{5+(3/2)5^2}-{-1+(3/2)(-1)^2}]# #=5+75/2+1-3/2# #=6+(75-1)/2# #=6+37# #=43.# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 4680 views around the world You can reuse this answer Creative Commons License