How do you evaluate the limit #sin(5x)/sin(6x)# as x approaches #0#? Calculus Limits Determining Limits Algebraically 1 Answer Eddie Oct 7, 2016 #5/6# Explanation: #lim_(x to 0) sin(5x)/sin(6x)# we will use fundamental trig result: #lim_(z to 0) ( sin z)/z = 1# #= lim_(x to 0) (5(5sin(5x))/(5x))/(6(sin(6x))/(6x)) = 5/6# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 10769 views around the world You can reuse this answer Creative Commons License