How do you evaluate the limit #(sin(2x))/(2x^2+x)# as x approaches #0#?
2 Answers
Oct 7, 2016
Explanation:
Use the fact that:
#lim_(t->0) sin(t)/t = 1#
Hence:
#lim_(x->0) sin(2x)/(2x^2+x) = lim_(x->0) (sin(2x) -: (2x))/((2x^2+x) -: (2x))#
#color(white)(lim_(x->0) sin(2x)/(2x^2+x)) = lim_(x->0) (sin(2x) -: (2x))/(x+1/2)#
#color(white)(lim_(x->0) sin(2x)/(2x^2+x)) = 1/(1/2)#
#color(white)(lim_(x->0) sin(2x)/(2x^2+x)) = 2#
Oct 7, 2016
Explanation:
so